
INTRODUCTION

REACTIVE OXYGEN SPECIES (ROS), including hydrogen per-
oxide (H2O2), hydroxyl radical (OH2), and superoxide

anion (O2
2), have been shown to be deleterious to various

physiologically important molecules including proteins, lipids,
and DNA (42). OH2 and O2

2 are free radicals, which means
that they have at least one unpaired electron. H2O2 is not a
radical but plays an important role in oxidative processes. In
addition, nitric oxide (NO) can interact with O2

2, forming
peroxynitrite (ONOO2). ONOO2 reacts with cellular proteins
generating nitrotyrosine, an end product of oxidative damage.
NAD(P)H oxidases, which are membrane-associated enzymes
that catalyze the reduction of oxygen by using NADH or
NADPH as the electron donor, are major sources of O2

2 in
vascular cells and cardiac myocytes (16). ROS are very unsta-
ble and highly reactive, and they tend to initiate chain reac-
tions that result in irreversible chemical changes in proteins
or lipids. These deleterious reactions can result in cellular

dysfunction and cytotoxicity. A number of defense systems
have evolved to counteract the accumulation of ROS. These
include enzymatic scavengers such as catalase, glutathione
peroxide, and superoxide dismutase (SOD). In heart, SOD is
present in two isoforms: Mn-SOD, which is expressed in the
mitochondrial matrix, and Cu/Zn-SOD, the cytosolic form.
However, these defense mechanisms are not always adequate
to counteract the production of ROS, resulting in what is termed
a state of oxidative stress. Oxidative stress is implicated in a
wide variety of diseases, including atherosclerosis, myocar-
dial ischemia/reperfusion injury, and heart failure (28). Accu-
mulating evidence has suggested that ROS function as signal
transduction intermediates to induce transcription factor acti-
vation, gene expression, cell growth, and apoptosis (32, 42).
It seems that understanding the molecular mechanisms lead-
ing to generation of ROS and endogenous antioxidant enzymes
may provide new strategies for heart diseases. In this review,
we discuss the major signaling pathways known to be involved
in regulating the oxidative stress-induced heart diseases.
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ABSTRACT

Reactive oxygen species (ROS) are proposed to contribute to the deterioration of cardiac function in patients
with heart diseases. It has been reported that ROS are increased in the failing heart and involved in athero-
sclerosis, myocardial ischemia/reperfusion injury, and heart failure. Antioxidant enzymes are decreased in
the decompensated heart, depressing defense mechanisms against oxidative stress. A variety of proteins, in-
cluding receptors, ionic channels, transporters, and components of signal transduction pathways, are sub-
strates of oxidation by ROS. ROS also function as signal transduction intermediates to induce transcription
factor activation, gene expression, cell growth, and apoptosis. Recently, the upstream and downstream mole-
cules of ROS in signal transduction pathways have been the subjects of intense investigation. These molecules
include the mitogen-activated protein kinase family, the Rho family of small GTP binding proteins, the Src
family of tyrosine kinases, Ras, and cytokines. The modulation of oxidative stress-induced signaling pathways
is effective for preventing the progression of heart diseases. Antioxidant. Redox Signal. 5, 789–794.
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OXIDATIVE STRESS-INDUCED
SIGNALING PATHWAYS

ROS are generated by a variety of factors such as irradia-
tion, ischemia/reperfusion, anti-cancer drugs, and inflamma-
tory cytokines. Low levels of ROS are regularly produced
during a process of physiological metabolism, and every cell
contains several enzymes such as catalase, glutathione perox-
idase, and SOD, which scavenge ROS from the cell. High lev-
els of ROS are generated from a variety of sources, including
xanthine oxidase, NADPH oxidase, the leakage of electrons
from mitochondria, and the cyclooxygenase pathway of arachi-
donic acid metabolism, and induce a variety of tissue dam-
ages (32). In heart, it has been reported that ROS evoke many
abnormalities, including cytotoxicity, cardiac stunning, arrhyth-
mia, and reduction of contractility. Administration of oxygen
free-radical scavengers such as SOD and catalase resulted in
a significant decrease in infarct size after 90 min of coronary
artery occlusion in canines (19). Furthermore, it has been
shown that N-(2-mercaptopropionyl)-glycine, an endogenous
antioxidant, markedly reduced cytotoxicity caused by H2O2 in
cultured cardiac myocytes (18).

The mitogen-activated protein kinases (MAPKs) are ser-
ine/threonine protein kinases. A growing body of evidence
has suggested that MAPKs play important roles in many cell
functions, including proliferation and differentiation (32, 49).
In particular, three subfamilies of MAPKs—extracellular signal-
regulated kinase (ERK), c-jun NH2-terminal protein kinase
(JNK), and p38MAPK—have been extensively characterized.
They are regulated by three distinctive signal transduction
pathways and show different functions. ERKs are activated by
a variety of growth factors, cytokines, and phorbol esters
through several distinct classes of cell surface receptors such
as receptor tyrosine kinases and G protein-coupled receptors,
and play pivotal roles in proliferation and differentiation in
many types of cells (10, 27). In cardiac myocytes, the activa-
tion of ERK has been reported to be critical for the develop-
ment of hypertrophy and specific gene expression. It has been
reported that angiotensin II (Ang II) activates the Src family
of tyrosine kinases and Ras in cardiac myocytes through G
protein-coupled Ang II type 1 receptor (37, 48). Activation of
the Src family of tyrosine kinases and Ras is required for acti-
vation of ERK in smooth muscle cells, while protein kinase
C, but not the Src family or Ras, is critical for ERK activation
in cardiac myocytes (39, 48). The signal transduction pathways
leading to activation of ERK seem to be different among cell
types. JNK and p38MAPK are not activated efficiently by
growth factors and phorbol esters but are preferentially acti-
vated by distinctive stimuli such as the proinflammatory cy-
tokines, ultraviolet irradiation, ROS, and cellular stresses, in-
cluding heat shock and osmotic stresses (10, 27). We have
reported that the Src family of tyrosine kinases, Ras, and Raf-1
are critical for ERK activation by H2O2 and that activation of
ERK plays an important role in protecting cardiac myocytes
from apoptotic death following oxidative stress (3). Pretreat-
ment with insulin significantly decreased the number of H2O2-
induced terminal deoxynucleotidyl transferase-mediated dUTP-
biotin nick end-labeling (TUNEL)-positive cardiac myocytes
and DNA fragmentation induced by H2O2 (5). Insulin strongly

activated both phosphatidylinositol 3-kinase (PI3K) and the
downstream effector Akt. Moreover, a pro-apoptotic protein,
Bad, was significantly phosphorylated and inactivated by in-
sulin through the PI3K pathway. Pretreatment with a specific
PI3K inhibitor, wortmannin, and overexpression of a domi-
nant negative (d.n.) mutant of PI3K abolished the cytoprotec-
tive effect of insulin (5). These data suggest that insulin may
protect cardiac myocytes from oxidative stress-induced apop-
tosis through the PI3K–Akt pathway.

ROS AND CARDIAC HYPERTROPHY

Mechanical stress is the most important stimulus for car-
diac hypertrophy. Stretch of cardiomyocytes evokes various
intracellular signals leading to cardiomyocyte hypertrophy (7,
46, 47, 49). We and others have developed an in vitro system
by which cultured cardiac myocytes are subjected to mechan-
ical stress and have demonstrated that mechanical stress in-
duces a variety of hypertrophic responses such as activation
of MAPKs, reprogramming of gene expressions, and an in-
crease in protein synthesis (23, 36, 45). Although ERK was
activated by mechanical stress partially through enhanced se-
cretion of Ang II and endothelin-1, JNK is strongly activated
by stretch independently of Ang II, suggesting that JNK might
be directly activated by mechanical stress (24). p38MAPK is
activated by various environmental stresses such as endotoxin,
osmotic shock, metabolic inhibitors, or ROS (15). Although
high levels of ROS induce cell injuries, including necrosis
and apoptosis, low levels of ROS induce activation of p38MAPK
and work as mediators of hypertrophic responses (3). It has
been reported that p38MAPK a and b induce cardiomyocyte
apoptosis and hypertrophy, respectively (44). It remains to be
determined whether isoform-specific activation of p38MAPK
depends on the levels of ROS in cardiac myocytes. It has been
reported that cardiac hypertrophy is induced by p38MAPK
but suppressed by JNK, and that SB203580, a specific
p38MAPK inhibitor, inhibits the myofibrillar organization and
hypertrophic cell profile in neonatal rat cardiomyocytes (11,
34). These results suggest that p38MAPK may play a critical
role in the development of cardiac hypertrophy in response to
mechanical stress.

The Rho family of small GTP-binding proteins (G pro-
teins), consisting of the Rho, Rac, and Cdc42 subfamilies,
plays pivotal roles in many aspects of cellular functions in-
cluding cytoskeletal reorganization, growth, transformation,
and differentiation (17, 41). Rac proteins have been reported
to be involved in the development of cardiac hypertrophy
(35). Moreover, it has been reported that Rac1 is essential for
assembly of plasma membrane NADPH oxidase in some types
of cells and that Rac1 regulates cell growth, migration, and
cellular transformation by controlling the intracellular produc-
tion of ROS (2, 16). Moreover, Rac1 is involved in a redox-
dependent signal transduction pathway leading to activation
of nuclear factor-kB (40). It has been reported that Rac1 is
involved in the intracellular burst of ROS after reoxygenation
and that JNK and p38MAPK are activated by a variety of cel-
lular stresses, including ROS, in cardiac myocytes (6, 22).
Previously, we have reported that Rho and Rac proteins play
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critical roles in mechanical stress-induced hypertrophic re-
sponses such as activation of ERK, expression of fetal and
immediate early response genes, and an increase in protein
synthesis in cardiac myocytes (4). It has been reported that
among small G proteins, Rac1 is involved in the activation of
p38MAPK and in the induction of cardiac hypertrophy (12).
We have demonstrated that stretch-induced activation of
p38MAPK is significantly suppressed by expression of d.n.
mutants of Rho family proteins in the following order: d.n.
Rac1 > d.n. RhoA > d.n. Cdc42 (6). Conversely, overexpres-
sion of a constitutively active (c.a.) mutant of Rac1 strongly
activated p38MAPK in cardiac myocytes. The p38MAPK ac-
tivity was slightly increased by c.a. Cdc42 but not by c.a.
RhoA. Overexpression of d.n. RhoA, d.n. Rac1, or d.n. Cdc42
did not have an effect on basal activity of p38MAPK in un-
stretched cardiomyocytes, and overexpression of d.n. and c.a.
Rho family proteins did not change the expression levels of
p38MAPK protein (6). These results suggest that Rho family
proteins, especially Rac1, play an important role in mechanical
stretch-induced activation of p38MAPK in cardiac myocytes.
Rac proteins lead to the production of ROS in phagocytic
cells. In nonphagocytic cells, Rac1 has a similar function and
regulates cell growth and migration and cellular transforma-
tion by controlling intracellular ROS production.

N-acetyl-L-cysteine (NAC), a potent antioxidant, inhibited
activation of p38MAPK induced by mechanical stretch in a
concentration-dependent manner (6). Other antioxidants such
as N-(2-mercaptopropionyl)-glycine and dimethyl sulfoxide
also significantly suppressed stretch-induced p38MAPK acti-
vation. Stretch-induced activation of JNK was also abolished
by the pretreatment with NAC, whereas the activation of ERK
was only slightly suppressed by NAC. These results indicate
that ROS are critically involved in stretch-induced activation
of p38MAPK and JNK, but not of ERK, in cardiac myocytes.
We examined whether mechanical stress induced an increase
in ROS production in cardiac myocytes using 2-methyl-6-
phenyl-3,7-dihydroimidazo-[1,2-a]pyrazin-3-one (CLA), which
specifically detects the enzymatic formation of O2

2 in the
xanthine/xanthine oxidase system (6). Mechanical stress in-
creased CLA chemiluminescence signals as compared with
unstretched cardiomyocytes, indicating that production of O2

2

is enhanced by mechanical stress. Stretch-induced production
of superoxide was completely inhibited by overexpression of
d.n. Rac1, while overexpression of d.n. RhoA or d.n. Cdc42
slightly attenuated the increase in superoxide generation induced
by stretch. When either c.a. Rac1 or c.a. Cdc42 was expressed
in cardiomyocytes, superoxide production was significantly
increased as compared with unstretched cardiomyocytes, and
this increase was abrogated by pretreatment with NAC. These
results suggest that Rho family proteins, especially Rac1,
play a pivotal role in stretch-induced production of ROS in
cardiac myocytes. As previously reported, mechanical stress
increases phenylalanine incorporation into cardiac myocytes
compared with unstretched cardiomyocytes. The increase was
significantly suppressed by the overexpression of d.n. Rac1
and by pretreatment with NAC and SB202190, an inhibitor of
p38MAPK, suggesting that the Rac1–ROS–p38MAPK sig-
naling pathway may play a critical role in stretch-induced car-
diac hypertrophy (6) (Fig. 1).

ROS AND CARDIOMYOCYTE APOPTOSIS

Recent studies reported that apoptosis plays an important
role in cardiac development and diseases (9, 14). Although
the precise mechanism of the cell death is yet unknown, it has
been postulated that loss of cardiomyocytes by apoptosis
causes heart failure (1, 21). Many studies have demonstrated
that ischemia/reperfusion generates ROS and that ROS in-
duce a variety of cardiomyocyte abnormalities, including cell
death (20). We have previously reported that ROS strongly in-
duce apoptosis in cultured cardiac myocytes (3). The plasma
concentration of tumor necrosis factor-a (TNF-a) is elevated
in many cardiac diseases, including heart failure, and TNF-a
exerts a negative inotropic effect on the heart (29, 33, 43).
Recently, basic and clinical studies have indicated that TNF-a
plays a critical role in myocardial injury and development of
heart failure. TNF-a can trigger apoptosis in many cell types,
including adult rat cardiomyocytes. Moreover, a recent study
has shown that transgenic mice with cardiac-specific overex-
pression of TNF-a develop dilated cardiomyopathy, and apop-
tosis is observed in the heart (26). These f indings indicate
that endogenous TNF-a contributes to apoptosis in cardiac
cells.

We and others have reported that ROS induce production of
TNF-a and cardiomyocyte apoptosis (8, 25). Cardiac myo-
cytes cultured in serum-free media for 24 h are stained posi-
tive by the TUNEL method (~5%). When cardiac myocytes
were incubated with 100 µM H2O2 for 24 h, the number of
TUNEL-positive cardiac myocytes was significantly increased
(~30.5%) (8). However, pretreatment with anti–TNF-a anti-
body (100 µg/ml) for 3 h before addition of H2O2 significantly
decreased the number of TUNEL-positive cardiomyocytes
(~9.5%). Pretreatment with anti–TNF-a antibody alone did
not have any effect on cardiac myocytes. When cardiac myo-
cytes were incubated with TNF-a for 24 h, the number of
TUNEL-positive cardiac myocytes was significantly increased
(10 ng/ml TNF-a, ~8%; 100 ng/ml TNF-a, ~25.5%) (8). Our
results suggest that TNF-a is involved in oxidative stress-
induced apoptosis and that a high level of TNF-a induces
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FIG. 1. Stretch-induced signal transduction pathways
leading to cardiac hypertrophy in cardiac myocytes.
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apoptosis in cardiac myocytes. The expression level of the
TNF-a gene increased rapidly and transiently following H2O2

stimulation. The maximal increase in TNF-a mRNA was ob-
served at 30 min after exposure to H2O2, and the level de-
creased thereafter. Although the concentration of TNF-a in
culture media of untreated cardiomyocytes was under the de-
tectable level from 10 min to 12 h, it increased slightly at 24 h
(33 pg/ml). These data suggest that cultured cardiomyocytes
constitutively secrete a small amount of TNF-a. When cardio-
myocytes were incubated with H2O2, TNF-a was detectable in
the culture medium from 6 h (~35 pg/ml), and the concentra-
tion of TNF-a was increased at 24 h (~106 pg/ml). Although
we could not detect the expression of TNF-a in the medium
within 6 h after H2O2 treatment, it is most likely that a small
amount of TNF-a (<20 pg/ml) was not detectable by the enzyme-
linked immunosorbent assay method used. It is also possible
that posttranscriptional regulation caused the difference in the
time course between mRNA and protein of TNF-a. The exper-
iment using a neutralizing antibody suggested that secreted
TNF-a plays an important role in H2O2-induced apoptosis in
cardiac myocytes (8). Although H2O2 actually induces the
production and secretion of TNF-a from cultured cardiac myo-
cytes, there is a large discrepancy between the H2O2-induced
concentration of TNF-a and the concentration of TNF-a that
induces apoptosis in cardiac myocytes. Neither 1 µM H2O2
nor 1 ng/ml TNF-a for 24 h induced apoptosis in cardiac my-
ocytes; however, incubation with both 1 µM H2O2 and 1 ng/ml
TNF-a for 24 h significantly increased the number of TUNEL-
positive cells compared with control (~11%) (8). Our data sug-
gest that TNF-a and oxidative stress synergistically induce
apoptosis in cultured cardiac myocytes (Fig. 2).

CONCLUSIONS

Mechanical stress is a pivotal stimulus for cells and evokes
a wide variety of intracellular signals. It has been of great in-
terest to elucidate how mechanical stress is converted into
biochemical signals and transmitted to the nucleus. Previously,
we and others have demonstrated that mechanical stress acti-

vates ERK partly through secreted vasoactive peptides such
as Ang II and endothelin-1 in cardiomyocytes (38, 49). Our
data suggested that stretch-induced activation of the ERK
pathway is redox-insensitive. Thus, the Rac1–ROS–p38MAPK
pathway is independent of the vasoactive peptides–ERK path-
way. We also provided the first evidence indicating that
p38MAPK is a critical component of the redox-sensitive sig-
naling pathways activated by mechanical stress. However, the
downstream targets of p38MAPK, which induce cardiac hy-
pertrophy, remain to be clarified.

We have recently demonstrated that TNF-a significantly
induces apoptosis in cardiomyocytes, indicating that ischemia/
reperfusion-induced production of TNF-a may play an im-
portant role in myocardial damage (8). Although Krown et al.
(25) have reported that TNF-a induces apoptosis of adult rat
cardiomyocytes but not of neonatal rat cardiomyocytes, using
comet analysis, we demonstrated that a high concentration of
TNF-a induces apoptosis in neonatal rat cardiomyocytes by
the TUNEL method. It is possible that they may use a low dose
of TNF-a to examine apoptosis in neonatal rat cardiomyo-
cytes. It has been reported that TNF-a induces the production
of ROS in various types of cells, including cardiac myocytes
(13, 31). Therefore, it is possible that ROS and TNF-a may
mutually stimulate each production and synergistically in-
duce cardiomyocyte apoptosis. Li et al. (30) reported that
TNF-a enhances hypoxia–reoxygenation-mediated apoptosis
in cultured human coronary artery endothelial cells. These re-
sults suggest that TNF-a cooperates with H2O2 for induction
of apoptosis.

It seems that understanding the molecular mechanisms
leading to generation of ROS and endogenous antioxidant en-
zymes may provide new strategies for treatment of heart dis-
eases. Further investigations are necessary to elucidate the
oxidative stress-induced signaling pathways in cardiac myo-
cytes.

ABBREVIATIONS

Ang II, angiotensin II; CLA, 2-methyl-6-phenyl-3,7-dihy-
droimidazo-[1,2-a]pyrazin-3-one; c.a., constitutively active;
d.n., dominant negative; ERK, extracellular signal-regulated
kinase; G protein, GTP-binding protein; H2O2, hydrogen per-
oxide; JNK, c-jun NH2-terminal protein kinase; MAPK,
mitogen-activated protein kinase; NAC, N-acetyl-L-cysteine;
NO, nitric oxide; O2

2, superoxide anion; OH2, hydroxyl radi-
cal; ONOO2, peroxynitrite; PI3K, phosphatidylinositol-3-
kinase; ROS, reactive oxygen species; SOD, superoxide dis-
mutase; TNF-a, tumor necrosis factor-a; TUNEL, terminal
deoxynucleotidyl transferase-mediated dUTP-biotin nick end-
labeling.
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