

Forum Mini Review

Oxidative Stress-Induced Signal Transduction Pathways in Cardiac Myocytes: Involvement of ROS in Heart Diseases

HIROYUKI TAKANO, YUNZENG ZOU, HIROSHI HASEGAWA, HIROSHI AKAZAWA,
TOSHIO NAGAI, and ISSEI KOMURO

ABSTRACT

Reactive oxygen species (ROS) are proposed to contribute to the deterioration of cardiac function in patients with heart diseases. It has been reported that ROS are increased in the failing heart and involved in atherosclerosis, myocardial ischemia/reperfusion injury, and heart failure. Antioxidant enzymes are decreased in the decompensated heart, depressing defense mechanisms against oxidative stress. A variety of proteins, including receptors, ionic channels, transporters, and components of signal transduction pathways, are substrates of oxidation by ROS. ROS also function as signal transduction intermediates to induce transcription factor activation, gene expression, cell growth, and apoptosis. Recently, the upstream and downstream molecules of ROS in signal transduction pathways have been the subjects of intense investigation. These molecules include the mitogen-activated protein kinase family, the Rho family of small GTP binding proteins, the Src family of tyrosine kinases, Ras, and cytokines. The modulation of oxidative stress-induced signaling pathways is effective for preventing the progression of heart diseases. *Antioxidant. Redox Signal.* 5, 789–794.

INTRODUCTION

REACTIVE OXYGEN SPECIES (ROS), including hydrogen peroxide (H_2O_2), hydroxyl radical (OH^-), and superoxide anion (O_2^-), have been shown to be deleterious to various physiologically important molecules including proteins, lipids, and DNA (42). OH^- and O_2^- are free radicals, which means that they have at least one unpaired electron. H_2O_2 is not a radical but plays an important role in oxidative processes. In addition, nitric oxide (NO) can interact with O_2^- , forming peroxynitrite ($ONOO^-$). $ONOO^-$ reacts with cellular proteins generating nitrotyrosine, an end product of oxidative damage. NAD(P)H oxidases, which are membrane-associated enzymes that catalyze the reduction of oxygen by using NADH or NADPH as the electron donor, are major sources of O_2^- in vascular cells and cardiac myocytes (16). ROS are very unstable and highly reactive, and they tend to initiate chain reactions that result in irreversible chemical changes in proteins or lipids. These deleterious reactions can result in cellular

dysfunction and cytotoxicity. A number of defense systems have evolved to counteract the accumulation of ROS. These include enzymatic scavengers such as catalase, glutathione peroxide, and superoxide dismutase (SOD). In heart, SOD is present in two isoforms: Mn-SOD, which is expressed in the mitochondrial matrix, and Cu/Zn-SOD, the cytosolic form. However, these defense mechanisms are not always adequate to counteract the production of ROS, resulting in what is termed a state of oxidative stress. Oxidative stress is implicated in a wide variety of diseases, including atherosclerosis, myocardial ischemia/reperfusion injury, and heart failure (28). Accumulating evidence has suggested that ROS function as signal transduction intermediates to induce transcription factor activation, gene expression, cell growth, and apoptosis (32, 42). It seems that understanding the molecular mechanisms leading to generation of ROS and endogenous antioxidant enzymes may provide new strategies for heart diseases. In this review, we discuss the major signaling pathways known to be involved in regulating the oxidative stress-induced heart diseases.

OXIDATIVE STRESS-INDUCED SIGNALING PATHWAYS

ROS are generated by a variety of factors such as irradiation, ischemia/reperfusion, anti-cancer drugs, and inflammatory cytokines. Low levels of ROS are regularly produced during a process of physiological metabolism, and every cell contains several enzymes such as catalase, glutathione peroxidase, and SOD, which scavenge ROS from the cell. High levels of ROS are generated from a variety of sources, including xanthine oxidase, NADPH oxidase, the leakage of electrons from mitochondria, and the cyclooxygenase pathway of arachidonic acid metabolism, and induce a variety of tissue damages (32). In heart, it has been reported that ROS evoke many abnormalities, including cytotoxicity, cardiac stunning, arrhythmia, and reduction of contractility. Administration of oxygen free-radical scavengers such as SOD and catalase resulted in a significant decrease in infarct size after 90 min of coronary artery occlusion in canines (19). Furthermore, it has been shown that *N*-(2-mercaptopropionyl)-glycine, an endogenous antioxidant, markedly reduced cytotoxicity caused by H_2O_2 in cultured cardiac myocytes (18).

The mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases. A growing body of evidence has suggested that MAPKs play important roles in many cell functions, including proliferation and differentiation (32, 49). In particular, three subfamilies of MAPKs—extracellular signal-regulated kinase (ERK), c-jun NH₂-terminal protein kinase (JNK), and p38MAPK—have been extensively characterized. They are regulated by three distinctive signal transduction pathways and show different functions. ERKs are activated by a variety of growth factors, cytokines, and phorbol esters through several distinct classes of cell surface receptors such as receptor tyrosine kinases and G protein-coupled receptors, and play pivotal roles in proliferation and differentiation in many types of cells (10, 27). In cardiac myocytes, the activation of ERK has been reported to be critical for the development of hypertrophy and specific gene expression. It has been reported that angiotensin II (Ang II) activates the Src family of tyrosine kinases and Ras in cardiac myocytes through G protein-coupled Ang II type 1 receptor (37, 48). Activation of the Src family of tyrosine kinases and Ras is required for activation of ERK in smooth muscle cells, while protein kinase C, but not the Src family or Ras, is critical for ERK activation in cardiac myocytes (39, 48). The signal transduction pathways leading to activation of ERK seem to be different among cell types. JNK and p38MAPK are not activated efficiently by growth factors and phorbol esters but are preferentially activated by distinctive stimuli such as the proinflammatory cytokines, ultraviolet irradiation, ROS, and cellular stresses, including heat shock and osmotic stresses (10, 27). We have reported that the Src family of tyrosine kinases, Ras, and Raf-1 are critical for ERK activation by H_2O_2 and that activation of ERK plays an important role in protecting cardiac myocytes from apoptotic death following oxidative stress (3). Pretreatment with insulin significantly decreased the number of H_2O_2 -induced terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling (TUNEL)-positive cardiac myocytes and DNA fragmentation induced by H_2O_2 (5). Insulin strongly

activated both phosphatidylinositol 3-kinase (PI3K) and the downstream effector Akt. Moreover, a pro-apoptotic protein, Bad, was significantly phosphorylated and inactivated by insulin through the PI3K pathway. Pretreatment with a specific PI3K inhibitor, wortmannin, and overexpression of a dominant negative (d.n.) mutant of PI3K abolished the cytoprotective effect of insulin (5). These data suggest that insulin may protect cardiac myocytes from oxidative stress-induced apoptosis through the PI3K–Akt pathway.

ROS AND CARDIAC HYPERTROPHY

Mechanical stress is the most important stimulus for cardiac hypertrophy. Stretch of cardiomyocytes evokes various intracellular signals leading to cardiomyocyte hypertrophy (7, 46, 47, 49). We and others have developed an *in vitro* system by which cultured cardiac myocytes are subjected to mechanical stress and have demonstrated that mechanical stress induces a variety of hypertrophic responses such as activation of MAPKs, reprogramming of gene expressions, and an increase in protein synthesis (23, 36, 45). Although ERK was activated by mechanical stress partially through enhanced secretion of Ang II and endothelin-1, JNK is strongly activated by stretch independently of Ang II, suggesting that JNK might be directly activated by mechanical stress (24). p38MAPK is activated by various environmental stresses such as endotoxin, osmotic shock, metabolic inhibitors, or ROS (15). Although high levels of ROS induce cell injuries, including necrosis and apoptosis, low levels of ROS induce activation of p38MAPK and work as mediators of hypertrophic responses (3). It has been reported that p38MAPK α and β induce cardiomyocyte apoptosis and hypertrophy, respectively (44). It remains to be determined whether isoform-specific activation of p38MAPK depends on the levels of ROS in cardiac myocytes. It has been reported that cardiac hypertrophy is induced by p38MAPK but suppressed by JNK, and that SB203580, a specific p38MAPK inhibitor, inhibits the myofibrillar organization and hypertrophic cell profile in neonatal rat cardiomyocytes (11, 34). These results suggest that p38MAPK may play a critical role in the development of cardiac hypertrophy in response to mechanical stress.

The Rho family of small GTP-binding proteins (G proteins), consisting of the Rho, Rac, and Cdc42 subfamilies, plays pivotal roles in many aspects of cellular functions including cytoskeletal reorganization, growth, transformation, and differentiation (17, 41). Rac proteins have been reported to be involved in the development of cardiac hypertrophy (35). Moreover, it has been reported that Rac1 is essential for assembly of plasma membrane NADPH oxidase in some types of cells and that Rac1 regulates cell growth, migration, and cellular transformation by controlling the intracellular production of ROS (2, 16). Moreover, Rac1 is involved in a redox-dependent signal transduction pathway leading to activation of nuclear factor- κ B (40). It has been reported that Rac1 is involved in the intracellular burst of ROS after reoxygenation and that JNK and p38MAPK are activated by a variety of cellular stresses, including ROS, in cardiac myocytes (6, 22). Previously, we have reported that Rho and Rac proteins play

critical roles in mechanical stress-induced hypertrophic responses such as activation of ERK, expression of fetal and immediate early response genes, and an increase in protein synthesis in cardiac myocytes (4). It has been reported that among small G proteins, Rac1 is involved in the activation of p38MAPK and in the induction of cardiac hypertrophy (12). We have demonstrated that stretch-induced activation of p38MAPK is significantly suppressed by expression of d.n. mutants of Rho family proteins in the following order: d.n. Rac1 > d.n. RhoA > d.n. Cdc42 (6). Conversely, overexpression of a constitutively active (c.a.) mutant of Rac1 strongly activated p38MAPK in cardiac myocytes. The p38MAPK activity was slightly increased by c.a. Cdc42 but not by c.a. RhoA. Overexpression of d.n. RhoA, d.n. Rac1, or d.n. Cdc42 did not have an effect on basal activity of p38MAPK in unstretched cardiomyocytes, and overexpression of d.n. and c.a. Rho family proteins did not change the expression levels of p38MAPK protein (6). These results suggest that Rho family proteins, especially Rac1, play an important role in mechanical stretch-induced activation of p38MAPK in cardiac myocytes. Rac proteins lead to the production of ROS in phagocytic cells. In nonphagocytic cells, Rac1 has a similar function and regulates cell growth and migration and cellular transformation by controlling intracellular ROS production.

N-acetyl-L-cysteine (NAC), a potent antioxidant, inhibited activation of p38MAPK induced by mechanical stretch in a concentration-dependent manner (6). Other antioxidants such as *N*-(2-mercaptopropionyl)-glycine and dimethyl sulfoxide also significantly suppressed stretch-induced p38MAPK activation. Stretch-induced activation of JNK was also abolished by the pretreatment with NAC, whereas the activation of ERK was only slightly suppressed by NAC. These results indicate that ROS are critically involved in stretch-induced activation of p38MAPK and JNK, but not of ERK, in cardiac myocytes. We examined whether mechanical stress induced an increase in ROS production in cardiac myocytes using 2-methyl-6-phenyl-3,7-dihydroimidzo-[1,2-a]pyrazin-3-one (CLA), which specifically detects the enzymatic formation of O_2^- in the xanthine/xanthine oxidase system (6). Mechanical stress increased CLA chemiluminescence signals as compared with unstretched cardiomyocytes indicating that production of O_2^- is enhanced by mechanical stress. Stretch-induced production of superoxide was completely inhibited by overexpression of d.n. Rac1, while overexpression of d.n. RhoA or d.n. Cdc42 slightly attenuated the increase in superoxide generation induced by stretch. When either c.a. Rac1 or c.a. Cdc42 was expressed in cardiomyocytes, superoxide production was significantly increased as compared with unstretched cardiomyocytes, and this increase was abrogated by pretreatment with NAC. These results suggest that Rho family proteins, especially Rac1, play a pivotal role in stretch-induced production of ROS in cardiac myocytes. As previously reported, mechanical stress increases phenylalanine incorporation into cardiac myocytes compared with unstretched cardiomyocytes. The increase was significantly suppressed by the overexpression of d.n. Rac1 and by pretreatment with NAC and SB202190, an inhibitor of p38MAPK, suggesting that the Rac1-ROS-p38MAPK signaling pathway may play a critical role in stretch-induced cardiac hypertrophy (6) (Fig. 1).

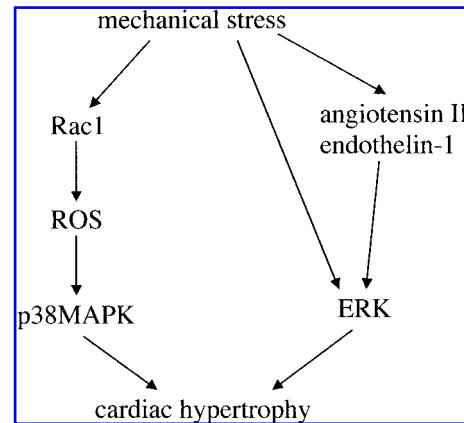
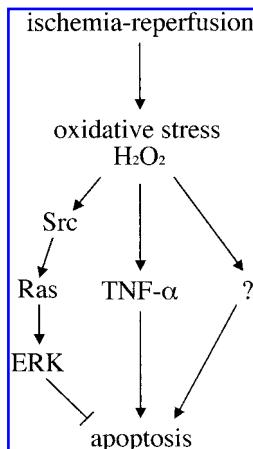



FIG. 1. Stretch-induced signal transduction pathways leading to cardiac hypertrophy in cardiac myocytes.

ROS AND CARDIOMYOCYTE APOPTOSIS

Recent studies reported that apoptosis plays an important role in cardiac development and diseases (9, 14). Although the precise mechanism of the cell death is yet unknown, it has been postulated that loss of cardiomyocytes by apoptosis causes heart failure (1, 21). Many studies have demonstrated that ischemia/reperfusion generates ROS and that ROS induce a variety of cardiomyocyte abnormalities, including cell death (20). We have previously reported that ROS strongly induce apoptosis in cultured cardiac myocytes (3). The plasma concentration of tumor necrosis factor- α (TNF- α) is elevated in many cardiac diseases, including heart failure, and TNF- α exerts a negative inotropic effect on the heart (29, 33, 43). Recently, basic and clinical studies have indicated that TNF- α plays a critical role in myocardial injury and development of heart failure. TNF- α can trigger apoptosis in many cell types, including adult rat cardiomyocytes. Moreover, a recent study has shown that transgenic mice with cardiac-specific overexpression of TNF- α develop dilated cardiomyopathy, and apoptosis is observed in the heart (26). These findings indicate that endogenous TNF- α contributes to apoptosis in cardiac cells.

We and others have reported that ROS induce production of TNF- α and cardiomyocyte apoptosis (8, 25). Cardiac myocytes cultured in serum-free media for 24 h are stained positive by the TUNEL method (~5%). When cardiac myocytes were incubated with 100 μ M H_2O_2 for 24 h, the number of TUNEL-positive cardiac myocytes was significantly increased (~30.5%) (8). However, pretreatment with anti-TNF- α antibody (100 μ g/ml) for 3 h before addition of H_2O_2 significantly decreased the number of TUNEL-positive cardiomyocytes (~9.5%). Pretreatment with anti-TNF- α antibody alone did not have any effect on cardiac myocytes. When cardiac myocytes were incubated with TNF- α for 24 h, the number of TUNEL-positive cardiac myocytes was significantly increased (10 ng/ml TNF- α , ~8%; 100 ng/ml TNF- α , ~25.5%) (8). Our results suggest that TNF- α is involved in oxidative stress-induced apoptosis and that a high level of TNF- α induces

FIG. 2. Oxidative stress-induced signal transduction pathways leading to apoptosis in cardiac myocytes.

apoptosis in cardiac myocytes. The expression level of the TNF- α gene increased rapidly and transiently following H₂O₂ stimulation. The maximal increase in TNF- α mRNA was observed at 30 min after exposure to H₂O₂, and the level decreased thereafter. Although the concentration of TNF- α in culture media of untreated cardiomyocytes was under the detectable level from 10 min to 12 h, it increased slightly at 24 h (33 pg/ml). These data suggest that cultured cardiomyocytes constitutively secrete a small amount of TNF- α . When cardiomyocytes were incubated with H₂O₂, TNF- α was detectable in the culture medium from 6 h (~35 pg/ml), and the concentration of TNF- α was increased at 24 h (~106 pg/ml). Although we could not detect the expression of TNF- α in the medium within 6 h after H₂O₂ treatment, it is most likely that a small amount of TNF- α (<20 pg/ml) was not detectable by the enzyme-linked immunosorbent assay method used. It is also possible that posttranscriptional regulation caused the difference in the time course between mRNA and protein of TNF- α . The experiment using a neutralizing antibody suggested that secreted TNF- α plays an important role in H₂O₂-induced apoptosis in cardiac myocytes (8). Although H₂O₂ actually induces the production and secretion of TNF- α from cultured cardiac myocytes, there is a large discrepancy between the H₂O₂-induced concentration of TNF- α and the concentration of TNF- α that induces apoptosis in cardiac myocytes. Neither 1 μ M H₂O₂ nor 1 ng/ml TNF- α for 24 h induced apoptosis in cardiac myocytes; however, incubation with both 1 μ M H₂O₂ and 1 ng/ml TNF- α for 24 h significantly increased the number of TUNEL-positive cells compared with control (~11%) (8). Our data suggest that TNF- α and oxidative stress synergistically induce apoptosis in cultured cardiac myocytes (Fig. 2).

CONCLUSIONS

Mechanical stress is a pivotal stimulus for cells and evokes a wide variety of intracellular signals. It has been of great interest to elucidate how mechanical stress is converted into biochemical signals and transmitted to the nucleus. Previously, we and others have demonstrated that mechanical stress acti-

vates ERK partly through secreted vasoactive peptides such as Ang II and endothelin-1 in cardiomyocytes (38, 49). Our data suggested that stretch-induced activation of the ERK pathway is redox-insensitive. Thus, the Rac1-ROS-p38MAPK pathway is independent of the vasoactive peptides-ERK pathway. We also provided the first evidence indicating that p38MAPK is a critical component of the redox-sensitive signaling pathways activated by mechanical stress. However, the downstream targets of p38MAPK, which induce cardiac hypertrophy, remain to be clarified.

We have recently demonstrated that TNF- α significantly induces apoptosis in cardiomyocytes, indicating that ischemia/reperfusion-induced production of TNF- α may play an important role in myocardial damage (8). Although Krown *et al.* (25) have reported that TNF- α induces apoptosis of adult rat cardiomyocytes but not of neonatal rat cardiomyocytes, using comet analysis, we demonstrated that a high concentration of TNF- α induces apoptosis in neonatal rat cardiomyocytes by the TUNEL method. It is possible that they may use a low dose of TNF- α to examine apoptosis in neonatal rat cardiomyocytes. It has been reported that TNF- α induces the production of ROS in various types of cells, including cardiac myocytes (13, 31). Therefore, it is possible that ROS and TNF- α may mutually stimulate each production and synergistically induce cardiomyocyte apoptosis. Li *et al.* (30) reported that TNF- α enhances hypoxia-reoxygenation-mediated apoptosis in cultured human coronary artery endothelial cells. These results suggest that TNF- α cooperates with H₂O₂ for induction of apoptosis.

It seems that understanding the molecular mechanisms leading to generation of ROS and endogenous antioxidant enzymes may provide new strategies for treatment of heart diseases. Further investigations are necessary to elucidate the oxidative stress-induced signaling pathways in cardiac myocytes.

ABBREVIATIONS

Ang II, angiotensin II; CLA, 2-methyl-6-phenyl-3,7-dihydroimidazo-[1,2- α]pyrazin-3-one; c.a., constitutively active; d.n., dominant negative; ERK, extracellular signal-regulated kinase; G protein, GTP-binding protein; H₂O₂, hydrogen peroxide; JNK, c-jun NH₂-terminal protein kinase; MAPK, mitogen-activated protein kinase; NAC, *N*-acetyl-L-cysteine; NO, nitric oxide; O₂⁻, superoxide anion; OH⁻, hydroxyl radical; ONOO⁻, peroxynitrite; PI3K, phosphatidylinositol-3-kinase; ROS, reactive oxygen species; SOD, superoxide dismutase; TNF- α , tumor necrosis factor- α ; TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling.

REFERENCES

1. Abbate A, Biondi-Zoccali GG, and Baldi A. Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. *J Cell Physiol* 193: 145–153, 2002.

2. Abo A, Pick E, Hall A, Totty N, Teahan CG, and Segal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. *Nature* 353: 668–670, 1991.
3. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, and Yazaki Y. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. *J Clin Invest* 100: 1813–1821, 1997.
4. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Zhu W, Kadowaki T, and Yazaki Y. Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. *Circ Res* 84: 458–466, 1999.
5. Aikawa R, Nawano M, Gu Y, Katagiri H, Asano T, Zhu W, Nagai R, and Komuro I. Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. *Circulation* 102: 2873–2879, 2000.
6. Aikawa R, Nagai T, Tanaka M, Zou Y, Ishihara T, Takano H, Hasegawa H, Akazawa H, Mizukami M, Nagai R, and Komuro I. Reactive oxygen species in mechanical stress-induced cardiac hypertrophy. *Biochem Biophys Res Commun* 289: 901–907, 2001.
7. Aikawa R, Nagai T, Kudoh S, Zou Y, Tanaka M, Tamura M, Akazawa H, Takano H, Nagai R, and Komuro I. Integrins play a critical role in mechanical stress-induced p38 MAPK activation. *Hypertension* 39: 233–238, 2002.
8. Aikawa R, Nitta-Komatsubara Y, Kudoh S, Takano H, Nagai T, Yazaki Y, Nagai R, and Komuro I. Reactive oxygen species induce cardiomyocyte apoptosis partly through TNF- α . *Cytokine* 18: 179–183, 2002.
9. Cesselli D, Jakoniuk I, Barlucchi L, Beltrami AP, Hintze TH, Nadal-Ginard B, Kajstura J, Leri A, and Anversa P. Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. *Circ Res* 89: 279–286, 2001.
10. Chang L and Karin M. Mammalian MAP kinases signaling cascades. *Nature* 410: 37–40, 2001.
11. Clerk A, Michael A, and Sugden PH. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: a role in cardiac myocyte hypertrophy? *J Cell Biol* 142: 523–535, 1998.
12. Clerk A, Pham FH, Fuller SJ, Sahai E, Aktories K, Marais R, Marshall C, and Sugden PH. Regulation of mitogen-activated protein kinases in cardiac myocytes through the small G protein Rac1. *Mol Cell Biol* 21: 1173–1184, 2001.
13. Ferdinand P, Danial H, Ambrus I, Rothery RA, and Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. *Circ Res* 87: 241–247, 2000.
14. Fisher SA, Langille BL, and Srivastava D. Apoptosis during cardiovascular development. *Circ Res* 87: 856–864, 2000.
15. Galcheva-Gargova Z, Derijard B, Wu IH, and Davis RJ. An osmosensing signal transduction pathway in mammalian cells. *Science* 265: 806–808, 1994.
16. Grindling KK, Sorescu D, and Ushio-Fukai M. NAD(P)H oxidase. Role in cardiovascular biology and disease. *Circ Res* 86: 494–501, 2000.
17. Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. *Annu Rev Cell Biol* 10: 31–54, 1994.
18. Horwitz LD, Fennessey PV, Shikes RH, and Kong Y. Marked reduction in myocardial infarct size due to prolonged infusion of an antioxidant during reperfusion. *Circulation* 89: 1792–1801, 1994.
19. Jolly SR, Kane WJ, Bailie MB, Abrams GD, and Lucchesi BR. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. *Circ Res* 54: 277–285, 1984.
20. Kaminski KA, Bonda TA, Korecki J, and Musial WJ. Oxidative stress and neutrophil activation—the two keystones of ischemia/reperfusion injury. *Int J Cardiol* 86: 41–59, 2002.
21. Kang PM and Izumo S. Apoptosis and heart failure: a critical review of the literature. *Circ Res* 86: 1107–1113, 2000.
22. Kim KS, Takeda K, Sethi R, Pracyk JB, Tanaka K, Zhou YF, Yu ZX, Ferrans VJ, Bruder JT, Kovesdi I, Irani K, Goldschmidt-Clemont P, and Finkel T. Protection from re-oxygenation injury by inhibition of rac1. *J Clin Invest* 101: 1821–1826, 1998.
23. Komuro I, Kaida T, Shibasaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, and Yazaki Y. Stretching cardiac myocytes stimulates protooncogene expression. *J Biol Chem* 265: 3595–3598, 1990.
24. Komuro I, Kudoh S, Yamazaki T, Zou Y, Shiojima I, and Yazaki Y. Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. *FASEB J* 10: 631–636, 1996.
25. Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, and Sabbadini RA. Tumor necrosis factor α -induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. *J Clin Invest* 98: 2854–2865, 1996.
26. Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, and Feldman AM. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor- α . *Circ Res* 81: 627–635, 1997.
27. Kyriakis JM and Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. *Physiol Rev* 81: 807–869, 2001.
28. Lefer DJ and Granger DN. Oxidative stress and cardiac disease. *Am J Med* 109: 315–323, 2000.
29. Levine B, Kalman J, Mayer L, Fillit HM, and Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. *N Engl J Med* 323: 236–241, 1990.
30. Li D, Yang B, and Mehta, JL. Tumor necrosis factor- α enhances hypoxia-reoxygenation-mediated apoptosis in cultured human coronary artery endothelial cells: critical role of protein kinase C. *Cardiovasc Res* 42: 805–813, 1999.
31. Li X, Moody MR, Engel D, Walker S, Clubb FJ Jr, Sivasubramanian N, Mann DL, and Reid MB. Cardiac-specific overexpression of tumor necrosis factor- α causes oxidative stress and contractile dysfunction in mouse diaphragm. *Circulation* 102: 1690–1696, 2000.
32. Martindale JL and Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. *J Cell Physiol* 192: 1–15, 2002.

33. Murray DR and Freeman GL. Tumor necrosis factor- α induces a biphasic effect on myocardial contractility in conscious dogs. *Circ Res* 78: 154–160, 1996.

34. Nemoto S, Sheng Z, and Lin A. Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy. *Mol Cell Biol* 18: 3518–3526, 1998.

35. Pracyk JB, Tanaka K, Hegland DD, Kim KS, Sethi R, Rovira II, Blazina DR, Lee L, Bruder JT, Kovesdi I, Goldschmidt-Clermont PJ, Irani K, and Finkel T. A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. *J Clin Invest* 102: 929–937, 1998.

36. Sadoshima J and Izumo S. Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. *EMBO J* 12: 1681–1692, 1993.

37. Sadoshima J and Izumo S. The heterotrimeric Gq protein-coupled angiotensin II receptor activates p21 ras via the tyrosine kinase-Shc-Grb2-Sos pathway in cardiac myocytes. *EMBO J* 15: 775–787, 1996.

38. Sadoshima J, Xu Y, Slayter HS, and Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. *Cell* 75: 977–984, 1993.

39. Schieffer B, Paxton WG, Chai Q, Marrero MB, and Bernstein KE. Angiotensin II controls p21 ras activity via pp60c-src. *J Biol Chem* 271: 10329–10333, 1996.

40. Sulciner DJ, Irani K, Yu ZX, Ferrans VJ, Goldschmidt-Clermont P, and Finkel T. rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF- κ B activation. *Mol Cell Biol* 16: 7115–7121, 1996.

41. Takano H, Komuro I, Oka T, Shiojima I, Hiroi Y, Mizuno T, and Yazaki Y. The Rho family G proteins play a critical role in muscle differentiation. *Mol Cell Biol* 18: 1580–1589, 1998.

42. Thannickal VJ and Fanburg BL. Reactive oxygen species in cell signaling. *Am J Physiol Lung Cell Mol Physiol* 279: L1005–L1028, 2000.

43. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, and Mann DL. Tumor necrosis factor- α and tumor necrosis factor receptors in the failing human heart. *Circulation* 93: 704–711, 1996.

44. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, and Chien KR. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. *J Biol Chem* 273: 2161–2168, 1998.

45. Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, Tamemoto H, Kadowaki T, Nagai R, and Yazaki Y. Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. *J Biol Chem* 268: 12069–12076, 1993.

46. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, Takano H, Hiroi Y, Ueki K, Tobe K, Kadowaki T, Nagai R, and Yazaki Y. Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. *J Clin Invest* 96: 438–446, 1995.

47. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara H, Aikawa R, Takano H, and Yazaki Y. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. *J Biol Chem* 271: 3221–3228, 1996.

48. Zou Y, Komuro I, Yamazaki T, Aikawa R, Kudoh S, Shiojima I, Hiroi Y, Mizuno T, and Yazaki Y. Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. *J Biol Chem* 271: 33592–33597, 1996.

49. Zou Y, Takano H, Akazawa H, Nagai T, Mizukami M, and Komuro I. Molecular and cellular mechanisms of mechanical stress-induced cardiac hypertrophy. *Endocr J* 49: 1–13, 2002.

Address reprint requests to:

Dr. Issei Komuro

Department of Cardiovascular Science and Medicine

Chiba University Graduate School of Medicine

1-8-1 Inohana, Chuo-ku

Chiba 260-8670, Japan

E-mail: komuro-tyk@umin.ac.jp

Received March 28, 2003; accepted August 1, 2003.

This article has been cited by:

1. Gui-bo Sun, Xiao Sun, Min Wang, Jing-xue Ye, Jian-yong Si, Hui-bo Xu, Xiang-bao Meng, Meng Qin, Jing Sun, Hong-wei Wang, Xiao-bo Sun. 2012. Oxidative stress suppression by luteolin-induced heme oxygenase-1 expression. *Toxicology and Applied Pharmacology* . [\[CrossRef\]](#)
2. Saurabh Bharti, Mahaveer Golechha, Santosh Kumari, Khalid Mehmood Siddiqui, Dharamvir Singh Arya. 2012. Akt/GSK-3#/eNOS phosphorylation arbitrates safranal-induced myocardial protection against ischemia–reperfusion injury in rats. *European Journal of Nutrition* **51**:6, 719-727. [\[CrossRef\]](#)
3. Aya Matsumoto, Steven R. Mason, Traute Flatscher-Bader, Leigh C. Ward, Susan A. Marsh, Peter A. Wilce, Robert G. Fassett, Judy B. de Haan, Jeff S. Coombes. 2012. Effects of exercise and antioxidant supplementation on endothelial gene expression. *International Journal of Cardiology* **158**:1, 59-65. [\[CrossRef\]](#)
4. Jong Hui Suh, Eunmi Choi, Min-Ji Cha, Byeong-Wook Song, Onju Ham, Se-Yeon Lee, Cheesoon Yoon, Chang-Yeon Lee, Jun-Hee Park, Sun Hee Lee, Ki-Chul Hwang. 2012. Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3# protein expression. *Biochemical and Biophysical Research Communications* . [\[CrossRef\]](#)
5. Jesus Palomero, Deborah Pye, Tabitha Kabayo, Malcolm J. Jackson. 2011. Effect of passive stretch on intracellular nitric oxide and superoxide activities in single skeletal muscle fibres: Influence of ageing. *Free Radical Research* 1-11. [\[CrossRef\]](#)
6. Shu-Fen Liou, Jong-Hau Hsu, Jyh-Chong Liang, Hung-Jen Ke, Ing-Jun Chen, Jiunn-Ren Wu, Jwu-Lai Yeh. 2011. San-Huang-Xie-Xin-Tang protects cardiomyocytes against hypoxia/reoxygenation injury via inhibition of oxidative stress-induced apoptosis. *Journal of Natural Medicines* . [\[CrossRef\]](#)
7. Joost J. Leenders, Yigal M. Pinto, Esther E. Creemers. 2011. Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling-. *Journal of Molecular and Cellular Cardiology* **51**:2, 156-167. [\[CrossRef\]](#)
8. Horacio E. Cingolani, Irene L. Ennis, Ernesto A. Aiello, Néstor G. Pérez. 2011. Role of autocrine/paracrine mechanisms in response to myocardial strain. *Pflügers Archiv - European Journal of Physiology* **462**:1, 29-38. [\[CrossRef\]](#)
9. H. Zhu, Y. Yang, Y. Wang, J. Li, P. W. Schiller, T. Peng. 2011. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. *Cardiovascular Research* . [\[CrossRef\]](#)
10. Ali Ghaemian, Ebrahim Salehifar, Rozita Jalalian, Farzad Ghasemi, Soheil Azizi, Safoora Masoumi, Hanieh Shiraj, Reza Ali Mohammadpour, Gholam Ali Bagheri. 2011. Zinc and Copper Levels in Severe Heart Failure and the Effects of Atrial Fibrillation on the Zinc and Copper Status. *Biological Trace Element Research* . [\[CrossRef\]](#)
11. Hsiu-Chuan Chou, Yi-Wen Chen, Tian-Ren Lee, Fen-Shiun Wu, Hsin-Tsu Chan, Ping-Chiang Lyu, John F. Timms, Hong-Lin Chan. 2010. Proteomics study of oxidative stress and Src kinase inhibition in H9C2 cardiomyocytes: a cell model of heart ischemia–reperfusion injury and treatment. *Free Radical Biology and Medicine* **49**:1, 96-108. [\[CrossRef\]](#)
12. Constance Schmelzer, Frank Döring. 2010. Identification of LPS-inducible genes downregulated by ubiquinone in human THP-1 monocytes. *BioFactors* **36**:3, 222-228. [\[CrossRef\]](#)
13. Paramjit S. Tappia, Girma Asemu, Delfin Rodriguez-Leyva. 2010. Phospholipase C as a potential target for cardioprotection during oxidative stressThis review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. *Canadian Journal of Physiology and Pharmacology* **88**:3, 249-263. [\[CrossRef\]](#)
14. Wen-Juan Li, Shao-Ping Nie, Yi Chen, Ming-Yong Xie, Ming He, Qiang Yu, Yan Yan. 2010. Ganoderma atrum polysaccharide protects cardiomyocytes against anoxia/reoxygenation-induced oxidative stress by mitochondrial pathway. *Journal of Cellular Biochemistry* n/a-n/a. [\[CrossRef\]](#)

15. Harjot K. Saini-Chohan , Naranjan S. Dhalla Redox Signaling for the Regulation of Intracellular Calcium in Cardiomyocytes 175-179. [\[Abstract\]](#) [\[Summary\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)
16. Yunhui Cheng, Xiaojun Liu, Shuo Zhang, Ying Lin, Jian Yang, Chunxiang Zhang. 2009. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4. *Journal of Molecular and Cellular Cardiology* **47**:1, 5-14. [\[CrossRef\]](#)
17. Sumio Akifusa, Noriaki Kamio, Yoshihiro Shimazaki, Noboru Yamaguchi, Tatsuji Nishihara, Yoshihisa Yamashita. 2009. Globular adiponectin-induced RAW 264 apoptosis is regulated by a reactive oxygen species-dependent pathway involving Bcl-2. *Free Radical Biology and Medicine* **46**:9, 1308-1316. [\[CrossRef\]](#)
18. Antonio Box, Antoni Sureda, Salud Deudero. 2009. Antioxidant response of the bivalve *Pinna nobilis* colonised by invasive red macroalgae *Lophocladia lallemandii*. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology* **149**:4, 456-460. [\[CrossRef\]](#)
19. Sumio Akifusa, Noriaki Kamio, Yoshihiro Shimazaki, Noboru Yamaguchi, Yoshihisa Yamashita. 2009. Involvement of Ca2+ in globular adiponectin-induced reactive oxygen species. *Biochemical and Biophysical Research Communications* **381**:4, 649-653. [\[CrossRef\]](#)
20. Nithya Mariappan, Carrie M. Elks, Bruno Fink, Joseph Francis. 2009. TNF-induced mitochondrial damage: a link between mitochondrial complex I activity and left ventricular dysfunction. *Free Radical Biology and Medicine* **46**:4, 462-470. [\[CrossRef\]](#)
21. J ROGALSKA, M BRZOSKA, A ROSCZENKO, J MONIUSZKOJAKONIUK. 2009. Enhanced zinc consumption prevents cadmium-induced alterations in lipid metabolism in male rats. *Chemico-Biological Interactions* **177**:2, 142-152. [\[CrossRef\]](#)
22. Lin Gao, Hang Yin, Robert S Smith, Lee Chao, Julie Chao. 2008. Role of kallistatin in prevention of cardiac remodeling after chronic myocardial infarction. *Laboratory Investigation* **88**:11, 1157-1166. [\[CrossRef\]](#)
23. L. Paulis, J. Matuskova, M. Adamcova, V. Pelouch, J. Simko, K. Krajcirovicova, A. Potacova, I. Hulin, P. Janega, O. Pechanova, F. Simko. 2008. Regression of left ventricular hypertrophy and aortic remodelling in NO-deficient hypertensive rats: effect of l-arginine and spironolactone. *Acta Physiologica* **194**:1, 45-55. [\[CrossRef\]](#)
24. Daeho Kwon, Kyungsun Choi, Chulhee Choi, Etty N Benveniste. 2008. Hydrogen peroxide enhances TRAIL-induced cell death through up-regulation of DR5 in human astrocytic cells. *Biochemical and Biophysical Research Communications* **372**:4, 870-874. [\[CrossRef\]](#)
25. Slavica Radovanovic, Mirjana Krotin, Dragan V. Simic, Jasmina Mimic-Oka, Ana Savic-Radojevic, Marija Pljesa-Ercegovac, Marija Matic, Nebojsa Ninkovic, Branislava Ivanovic, Tatjana Simic. 2008. Markers of oxidative damage in chronic heart failure: role in disease progression. *Redox Report* **13**:3, 109-116. [\[CrossRef\]](#)
26. Jyh-Ming Chow, Guan-Cheng Huang, Hui-Yi Lin, Shing-Chuan Shen, Liang-Yo Yang, Yen-Chou Chen. 2008. Cytotoxic effects of metal protoporphyrins in glioblastoma cells: Roles of albumin, reactive oxygen species, and heme oxygenase-1. *Toxicology Letters* **177**:2, 97-107. [\[CrossRef\]](#)
27. Narasimman Gurusamy, Shyamal Goswami, Gautam Malik, Dipak K. Das. 2008. Oxidative injury induces selective rather than global inhibition of proteasomal activity. *Journal of Molecular and Cellular Cardiology* **44**:2, 419-428. [\[CrossRef\]](#)
28. Esad Koklu, Mustafa Akcakus, Figen Narin, Recep Saraymen. 2007. The relationship between birth weight, oxidative stress and bone mineral status in newborn infants. *Journal of Paediatrics and Child Health* **43**:10, 667-672. [\[CrossRef\]](#)
29. Yuma Hoshino , Keisuke Shioji , Hajime Nakamura , Hiroshi Masutani , Junji Yodoi . 2007. From Oxygen Sensing to Heart Failure: Role of Thioredoxin. *Antioxidants & Redox Signaling* **9**:6, 689-699. [\[Abstract\]](#) [\[Full Text PDF\]](#) [\[Full Text PDF with Links\]](#)

30. Lijun Liu, Jie Li, Jiang Liu, Zhaokai Yuan, Sandrine V. Pierre, Weikai Qu, Xiaochen Zhao, Zijian Xie. 2006. Involvement of Na+/K+-ATPase in hydrogen peroxide-induced hypertrophy in cardiac myocytes. *Free Radical Biology and Medicine* **41**:10, 1548-1556. [[CrossRef](#)]

31. Chiara Laezza, Gherardo Mazziotti, Laura Fiorentino, Patrizia Gazzero, Giuseppe Portella, Diego Gerbasio, Carlo Carella, Giuseppe Matarese, Maurizio Bifulco. 2006. HMG-CoA reductase inhibitors inhibit rat propylthiouracil-induced goiter by modulating the ras-MAPK pathway. *Journal of Molecular Medicine* **84**:11, 967-973. [[CrossRef](#)]

32. Lu Cai. 2006. Suppression of nitrate damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. *Free Radical Biology and Medicine* **41**:6, 851-861. [[CrossRef](#)]

33. Shiori Kyo , Hajime Otani , Seiji Matsuhsa , Yuzo Akita , Chiharu Enoki , Kimiko Tatsumi , Reiji Hattori , Hiroji Imamura , Hiroshi Kamihata , Toshiji Iwasaka . 2006. Role of Oxidative/Nitrosative Stress in the Tolerance to Ischemia/Reperfusion Injury in Cardiomyopathic Hamster Heart. *Antioxidants & Redox Signaling* **8**:7-8, 1351-1361. [[Abstract](#)] [[Full Text PDF](#)] [[Full Text PDF with Links](#)]

34. Nadine Dragan, Moneïm Smani, Sandrine Arnaud-Dabernat, Clément Dubost, Isabelle Moranvillier, Pierre Costet, Jean-Yves Daniel, Evelyne Peuchant. 2006. Acute oxidative stress is associated with cell proliferation in the mouse liver. *FEBS Letters* **580**:16, 3845-3852. [[CrossRef](#)]

35. Syamal K. Bhattacharya, Robert A. Ahokas, Laura D. Carbone, Kevin P. Newman, Ivan C. Gerling, Yao Sun, Karl T. Weber. 2006. Macro- and micronutrients in African-Americans with heart failure. *Heart Failure Reviews* **11**:1, 45-55. [[CrossRef](#)]

36. Eiki Takimoto, Hunter C. Champion, Manxiang Li, Shuxun Ren, E. Rene Rodriguez, Barbara Tavazzi, Giuseppe Lazzarino, Nazareno Paolocci, Kathleen L. Gabrielson, Yibin Wang, David A. Kass. 2005. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. *Journal of Clinical Investigation* **115**:5, 1221-1231. [[CrossRef](#)]

37. Yuichiro J. Suzuki , Hiroko Nagase , Kai Nie , Ah-Mee Park . 2005. Redox Control of Growth Factor Signaling: Recent Advances in Cardiovascular Medicine. *Antioxidants & Redox Signaling* **7**:5-6, 829-834. [[Abstract](#)] [[Full Text PDF](#)] [[Full Text PDF with Links](#)]

38. Dipak K Das, Nilanjana Maulik. 2005. Mitochondrial function in cardiomyocytes: target for cardioprotection. *Current Opinion in Anaesthesiology* **18**:1, 77-82. [[CrossRef](#)]

39. Marina Afanasyeva, Dimitrios Georgakopoulos, Noel R. Rose. 2004. Autoimmune myocarditis: cellular mediators of cardiac dysfunction. *Autoimmunity Reviews* **3**:7-8, 476-486. [[CrossRef](#)]

40. Sanjoy Ghosh, Simon Ting, Howard Lau, Thomas Pulinilkunnil, Ding An, Dake Qi, Mohammed A Abrahani, Brian Rodrigues. 2004. Increased efflux of glutathione conjugate in acutely diabetic cardiomyocytes. *Canadian Journal of Physiology and Pharmacology* **82**:10, 879-887. [[CrossRef](#)]

41. O SORG. 2004. Oxidative stress: a theoretical model or a biological reality?. *Comptes Rendus Biologies* **327**:7, 649-662. [[CrossRef](#)]

42. H Isomura. 2004. Bone metabolism and oxidative stress in postmenopausal rats with iron overload. *Toxicology* **197**:2, 92-99. [[CrossRef](#)]

43. Yuichiro J. Suzuki , Kathy K. Griendling . 2003. Redox Control of Growth Factor Signaling in Heart, Lung, and Circulation. *Antioxidants & Redox Signaling* **5**:6, 689-690. [[Citation](#)] [[Full Text PDF](#)] [[Full Text PDF with Links](#)]

44. Dipak K. Das Methods in Redox Signaling . [[Citation](#)] [[Full Text HTML](#)] [[Full Text PDF](#)] [[Full Text PDF with Links](#)]